10x^2+20=100

Simple and best practice solution for 10x^2+20=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x^2+20=100 equation:



10x^2+20=100
We move all terms to the left:
10x^2+20-(100)=0
We add all the numbers together, and all the variables
10x^2-80=0
a = 10; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·10·(-80)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*10}=\frac{0-40\sqrt{2}}{20} =-\frac{40\sqrt{2}}{20} =-2\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*10}=\frac{0+40\sqrt{2}}{20} =\frac{40\sqrt{2}}{20} =2\sqrt{2} $

See similar equations:

| (x+3)(x+5)(x+7)=693 | | -((2/3)a)+(7/2)=(-(227/36))+((3/2)a) | | (12)2/3x+7x=90 | | -2/3a+7/2=-227/36)+3/2a | | x^2−5x+15=5 | | g-30.5=40 | | +10m–3=2m+29 | | t+6.1=11.4 | | 5l=2l+2(l+10) | | 3/4*m=12 | | -20*m=60 | | 10z^2+5z=0 | | -7*m=-56 | | -13m=-377 | | -12*d=-48 | | 2t^2-1=0 | | 0.667n+4=10 | | 3x+94=97 | | -21+g=-12 | | 7/8-5x=x-1/3 | | 2t^2=1 | | 3.14×2x²=A | | 2x+17+123=180 | | 2x+17+23=180 | | -4m-3=5-3m+6-19 | | 43+4x-16+109=180 | | (7x+9)(4x+4)+57=180 | | (x−9)(x−5)=0 | | 75+(7x+14)+49=180 | | Y+4y+29=0 | | 49+(7x+14)+75=180 | | Y-4x=58 |

Equations solver categories